Abstract

ObjectivesTo evaluate the microstructural integrity of brain white matter tracts in patients with Neuro-Behcet's syndrome (NBS) and Behcet's syndrome (BS) without neurological manifestations using diffusion tensor imaging (DTI) and to investigate potential utility of DTI as a surrogate biomarker of neurocognitive functioning and disease severity. MethodsThis cross-sectional study comprised 34 NBS patients and 32 BS patients without neurological involvement, identified based on the International Study Group of the Behcet's disease (ISGBD) and the International Consensus Recommendation (ICR) criteria, as well as 33 healthy controls. Cognitive functions, including attention, memory, language, abstraction, executive control, visuospatial skills, and sensorimotor performance were assessed using standardized questionnaires. DTI data were analyzed using tract-based spatial statistics (TBSS) and automated probabilistic tractography to investigate inter-group differences. Subsequently, correlations between tensor-derived parameters of white matter tracts, neurocognitive test scores, and disease severity measures were examined. ResultsDTI revealed decreased fractional anisotropy and increased radial diffusivity, mean diffusivity, and axial diffusivity in both supratentorial and infratentorial white matter in NBS patients, indicating widespread loss of microstructural integrity. Moreover, this loss of integrity was also observed in BS patients without neurological manifestations, albeit to a lesser extent. In NBS patients, certain white matter tracts, including cingulum bundle, were associated with poor cognitive performance across multiple domains and disease severity. DiscussionDTI findings might potentially serve as a neuroimaging marker to predict the extent of neurocognitive impairment and disease severity associated with central nervous system involvement in BS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.