Abstract

Intraventricular injections of vasopressin (VP) and antagonists with varying degrees of specificity for the VP receptors were used to identify the action of endogenous brain VP on 0.3 M NaCl intake by sodium-deficient rats. Lateral ventricular injections of 100 ng and 1 microg VP caused barrel rotations and a dramatic decrease in NaCl intake by sodium-deficient rats and suppressed sucrose intake. Intraventricular injection of the V(1)/V(2) receptor antagonist [d(CH(2))(5)(1),O-Et-Tyr(2),Val(4), Arg(8)]VP and the V(1) receptor antagonist [d(CH(2))(5)(1),O-Me-Tyr(2),Arg(8)]VP (MeT-AVP) significantly suppressed NaCl intake by sodium-deficient rats without causing motor disturbances. MeT-AVP had no effect on sucrose intake (0.1 M). In contrast, the selective V(2) receptor antagonist had no significant effect on NaCl intake. Last, injections of 100 ng MeT-AVP decreased mean arterial blood pressure (MAP), whereas 100 ng VP elevated MAP and pretreatment with MeT-AVP blocked the pressor effect of VP. These results indicate that the effects produced by 100 ng MeT-AVP represent receptor antagonistic activity. These findings suggest that the effect of exogenous VP on salt intake is secondary to motor disruptions and that endogenous brain VP neurotransmission acting at V(1) receptors plays a role in the arousal of salt appetite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.