Abstract

The ability to diagnose cancer rapidly with high sensitivity and specificity is essential to exploit advances in new treatments to lead significant reductions in mortality and morbidity. Current cancer diagnostic tests observing tissue architecture and specific protein expression for specific cancers suffer from inter-observer variability, poor detection rates and occur when the patient is symptomatic. A new method for the detection of cancer using 1 μl of human serum, attenuated total reflection—Fourier transform infrared spectroscopy and pattern recognition algorithms is reported using a 433 patient dataset (3897 spectra). To the best of our knowledge, we present the largest study on serum mid-infrared spectroscopy for cancer research. We achieve optimum sensitivities and specificities using a Radial Basis Function Support Vector Machine of between 80.0 and 100 % for all strata and identify the major spectral features, hence biochemical components, responsible for the discrimination within each stratum. We assess feature fed-SVM analysis for our cancer versus non-cancer model and achieve 91.5 and 83.0 % sensitivity and specificity respectively. We demonstrate the use of infrared light to provide a spectral signature from human serum to detect, for the first time, cancer versus non-cancer, metastatic cancer versus organ confined, brain cancer severity and the organ of origin of metastatic disease from the same sample enabling stratified diagnostics depending upon the clinical question asked.Electronic supplementary materialThe online version of this article (doi:10.1007/s11060-016-2060-x) contains supplementary material, which is available to authorized users.

Highlights

  • Attenuated total reflection—Fourier transform infrared spectroscopy is rapid, cost-effective, simple to operate and can be handheld

  • We demonstrate the use of infrared light to provide a spectral signature from human serum to detect, for the first time, cancer versus non-cancer, metastatic cancer versus organ confined, brain cancer severity and the organ of origin of metastatic disease from the same sample enabling stratified diagnostics depending upon the clinical question asked

  • During ATR-FTIR the infrared light is directed through an internal reflection element (IRE) with a high refractive index enabling an evanescent-wave to extend beyond the IRE surface penetrating the sample, which must be in intimate contact with the IRE surface [2]

Read more

Summary

Introduction

Attenuated total reflection—Fourier transform infrared spectroscopy is rapid, cost-effective, simple to operate and can be handheld. Biomolecules exhibit responses to different wavelengths of light, the resulting spectrum can be thought of as the sample ‘fingerprint’, spectroscopic analysis allows for objective classification on a molecular level [1]. ATR-FTIR is an excellent vibrational spectroscopic technique for the analysis of biofluids (e.g. serum) due to its rapidity and ease of translation to the clinical environment, i.e. ATR-FTIR requires no sample preparation when. During ATR-FTIR the infrared light is directed through an internal reflection element (IRE) with a high refractive index (e.g. diamond/germanium) enabling an evanescent-wave to extend beyond the IRE surface penetrating the sample, which must be in intimate contact with the IRE surface [2]. Blood serum is a primary carrier of small molecules in the body; it holds all secreted molecules from different tissues in response to different physiological needs, dysfunctions and pathological states [5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.