Abstract

The aim of this work is to detect and classify brain tumours using computational intelligence techniques on magnetic resonance imaging (MRI) images. A dataset of 3264 MRI brain images consisting of 4 categories: unspecified glioma, meningioma, pituitary, and healthy brain, was used in this study. Twelve convolutional neural networks (GoogleNet, MobileNetV2, Xception, DesNet-BC, ResNet 50, SqueezeNet, ShuffleNet, VGG-16, AlexNet, Enet, EfficientB0, and MobileNetV2 with meta pseudo-labels) were used to classify gliomas, meningiomas, pituitary tumours, and healthy brains to find the most appropriate model. The experiments included image preprocessing and hyperparameter tuning. The performance of each neural network was evaluated based on accuracy, precision, recall, and F-measure for each type of brain tumour. The experimental results show that the MobileNetV2 convolutional neural network (CNN) model was able to diagnose brain tumours with 99% accuracy, 98% recall, and 99% F1 score. On the other hand, the validation data analysis shows that the CNN model GoogleNet has the highest accuracy (97%) among CNNs and seems to be the best choice for brain tumour classification. The results of this work highlight the importance of artificial intelligence and machine learning for brain tumour prediction. Furthermore, this study achieved the highest accuracy in brain tumour classification to date, and it is also the only study to compare the performance of so many neural networks simultaneously.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.