Abstract

Brain tumors have high morbidity and may lead to highly lethal cancer. In clinics, accurate segmentation of tumors is the means for diagnosis and determination of subsequent treatment options. Due to the irregularity and blurring of tumor boundaries, accurately segmenting the tumor lesions has received extensive attention in medical image analysis. In view of this situation, this paper proposed a brain tumor segmentation method based on generative adversarial networks (GANs). The GAN architecture consists of a densely connected three-dimensional (3D) U-Net used for segmentation and a classification network for discrimination, both of which use 3D convolutions to fuse multi-dimensional context information. The densely connected 3D U-Net model introduces a dense connection to accelerate network convergence, extracting more detailed information. The adversarial training makes the distribution of segmentation results closer to that of labeled data, which enables the network to segment some unexpected small tumor subregions. Alternately, train two networks and finally achieve a highly accurate classification of each voxel. The experiments conducted on BraTS2017 brain tumor MRI dataset show that the proposed method has higher accuracy in brain tumor segmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.