Abstract

A crucial stage in the diagnosis of brain disorders using magnetic resonance images is feature extraction. The feature extraction procedure is used to reduce the amount of the picture data by removing the necessary information from the segmented image. The segmentation strategy and features that are extracted have an impact on the classification algorithm's dependability. With the aid of a Support Vector Machine, texture features are retrieved in this study using a Grey Level Co-occurrence Matrix, while form features are extracted using connected areas. Images of benign tumours, malignant tumours, and a normal brain all exhibit distinctive features. The classification of MR images can benefit from this change in feature values. A SVM classifier will receive the features that were thusly obtained for training and testing and further able to classify the abnormalities in brain images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.