Abstract
Accurate and timely diagnosis of brain tumors is critical for successful treatment of the disease. Early detection not only aids in the development of better medication, but it can also save a life in the long run. The domain of brain tumor analysis has efficiently applied medical image processing ideas, particularly on MR images. This paper presents segmentation using Convolutional Neural Networks (CNN) architecture with ResNet50 and EfficientNet as backbones on the Figshare data set, with an accuracy level of 0.xxx.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Informatics and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.