Abstract

<span lang="EN-US">Deep learning (DL) is a subfield of artificial intelligence (AI) used in several sectors, such as cybersecurity, finance, marketing, automated vehicles, and medicine. Due to the advancement of computer performance, DL has become very successful. In recent years, it has processed large amounts of data, and achieved good results, especially in image analysis such as segmentation and classification. Manual evaluation of tumors, based on medical images, requires expensive human labor and can easily lead to misdiagnosis of tumors. Researchers are interested in using DL algorithms for automatic tumor diagnosis. convolutional neural network (CNN) is one such algorithm. It is suitable for medical image classification tasks. In this paper, we will focus on the development of four sequential CNN models to classify brain tumors in magnetic resonance imaging (MRI) images. We followed two steps, the first being data preprocessing and the second being automatic classification of preprocessed images using CNN. The experiments were conducted on a dataset of 3,000 MRI images, divided into two classes: tumor and normal. We obtained a good accuracy of 98,27%, which outperforms other existing models.</span>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.