Abstract

To prevent or delay the onset of Alzheimer’s disease (AD), we must understand its molecular basis. The great majority of AD cases arise sporadically with a late onset after 65 years of age (LOAD). However, rare familial cases of AD can occur due to dominant mutations in a small number of genes that cause an early onset prior to 65 years of age (EOfAD). As EOfAD and LOAD share similar pathologies and disease progression, analysis of EOfAD genetic models may give insight into both subtypes of AD. Sortilin-related receptor 1 (SORL1) is genetically associated with both EOfAD and LOAD and provides a unique opportunity to investigate the relationships between both forms of AD. Currently, the role of SORL1 mutations in AD pathogenesis is unclear. To understand the molecular consequences of SORL1 mutation, we performed targeted mutagenesis of the orthologous gene in zebrafish. We generated an EOfAD-like mutation, V1482Afs, and a putatively null mutation, to investigate whether EOfAD-like mutations in sorl1 display haploinsufficiency by acting through loss-of-function mechanisms. We performed mRNA-sequencing on whole brains, comparing wild type fish with their siblings heterozygous for EOfAD-like or putatively loss-of-function mutations in sorl1, or transheterozygous for these mutations. Differential gene expression analysis identified a small number of differentially expressed genes due to the sorl1 genotypes. We also performed enrichment analysis on all detectable genes to obtain a more complete view on changes to gene expression by performing three methods of gene set enrichment analysis, then calculated an overall significance value using the harmonic mean p-value. This identified subtle effects on expression of genes involved in energy production, mRNA translation and mTORC1 signalling in both the EOfAD-like and null mutant brains, implying that these effects are due to sorl1 haploinsufficiency. Surprisingly, we also observed changes to expression of genes occurring only in the EOfAD-mutation carrier brains, suggesting gain-of-function effects. Transheterozygosity for the EOfAD-like and null mutations (i.e. lacking wild type sorl1), caused apparent effects on iron homeostasis and other transcriptome changes distinct from the single-mutation heterozygous fish. Our results provide insight into the possible early brain molecular effects of an EOfAD mutation in human SORL1. Differential effects of heterozygosity and complete loss of normal SORL1 expression are revealed.

Highlights

  • Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia

  • We investigated whether transcripts of the Early-onset familial Alzheimer’s disease (EOfAD)-like allele of sorl1 are subject to nonsense mediated mRNA decay (NMD) by allele-specific digital quantitative Polymerase chain reaction (PCR) on Complementary DNA (cDNA) generated from EOfAD-like/+ brains

  • We showed that the zebrafish V1482fs transcript of sorl1 appears to be subject to NMD, as there is a clear imbalance in the expression of the mutant and wild type alleles of sorl1 present in the EOfAD-like/+ brains

Read more

Summary

Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. To prevent or delay the onset of AD, we need to understand the early cellular changes which eventually lead to these AD pathologies. This is difficult to investigate in humans, as pre-symptomatic, living AD brain tissue is inaccessible for detailed molecular analysis. The brain transcriptomes of these mouse models show low concordance with human AD, and with each other [13]. These mouse models are unlikely to mimic, accurately, the genetic state of the human disease

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.