Abstract

The effectiveness of intranasal drug delivery for brain targeting has emerged as a hope of remedy for various CNS disorders. The nose to brain absorption of therapeutic molecules claims two effective pathways, which include trans-neuronal for immediate action and para-neuronal for delayed action. To evaluate the contribution of both the pathways in absorption of therapeutic molecules and nanocarriers, lidocaine, a nerve-blocking agent, was used to impair the action potential of olfactory nerve. An anti-Parkinson drug ropinirole was covalently complexes with 99mTc in presence of SnCl2 using in-house developed reduction technology. The radiolabeled formulations were administered intranasally in lidocaine challenged rabbit and rat. The qualitative and quantitative outcomes of neural and non-neural pathways were estimated using gamma scintigraphy and UHPLC-MS/MS, respectively. The results showed a significant (p ≤ 0.005) increase in radioactivity counts and drug concentration in the brain of rabbit and rat compared to the animal groups challenged with lidocaine. This concludes the significant contribution (p ≤ 0.005) of trans-neuronal and para-neuronal pathway in nose to brain drug delivery. Therefore, results proved that it is an art of a formulator scientist to make the drug carriers to exploit the choice of absorption pathway for their instant and extent of action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.