Abstract

Durable glioblastoma multiforme (GBM) management requires long-term chemotherapy after surgery to eliminate remaining cancerous tissues. Among chemotherapeutics, temozolomide is considered as the first-line drug for GBM therapy, but the treatment outcome is not satisfactory. Notably, regorafenib, an oral multi-kinase inhibitor, has been reported to exert a markedly superior effect on GBM suppression compared with temozolomide. However, poor site-specific delivery and bioavailability significantly restrict the efficient permeability of regorafenib to brain lesions and compromise its treatment efficacy. Therefore, human H-ferritin (HFn), regorafenib, and Cu2+ are rationally designed as a brain-targeted nanoplatform (HFn-Cu-REGO NPs), fulfilling the task of site-specific delivery and manipulating autophagy and cuproptosis against GBM. Herein, HFn affords a preferential accumulation capacity to GBM due to transferrin receptor 1 (TfR1)-mediated active targeting and pH-responsive delivery behavior. Moreover, regorafenib can inhibit autophagosome-lysosome fusion, resulting in lethal autophagy arrest in GBM cells. Furthermore, Cu2+ not only facilitates the encapsulation of regorafenib to HFn through coordination interaction but also disturbs copper homeostasis for triggering cuproptosis, resulting in a synergistical effect with regorafenib-mediated lethal autophagy arrest against GBM. Therefore, this work may broaden the clinical application scope of Cu2+ and regorafenib in GBM treatment via modulating autophagy and cuproptosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.