Abstract

Previous work has shown a relationship between parietal lobe anatomy and nonnative speech sound learning. We scanned a new group of phonetic learners using structural magnetic resonance imaging and diffusion tensor imaging. Voxel-based morphometry indicated higher white matter (WM) density in left Heschl's gyrus (HG) in faster compared with slower learners, and manual segmentation of this structure confirmed that the WM volume of left HG is larger in the former compared with the latter group. This finding was replicated in a reanalysis of the original groups tested in Golestani and others (2002, Anatomical correlates of learning novel speech sounds. Neuron 35:997-1010). We also found that faster learners have a greater asymmetry (left > right) in parietal lobe volumes than slower learners and that the right insula and HG are more superiorly located in slower compared with faster learners. These results suggest that left auditory cortex WM anatomy, which likely reflects auditory processing efficiency, partly predicts individual differences in an aspect of language learning that relies on rapid temporal processing. It also appears that a global displacement of components of a right hemispheric language network, possibly reflecting individual differences in the functional anatomy and lateralization of language processing, is predictive of speech sound learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.