Abstract

The pathophysiological differences between menstrually-related migraine (MRM) and pure menstrual migraine (PMM) are largely unclear. The aim of this study was to investigate the potential differences in brain structure and function between PMM and MRM. Forty-eight menstrual migraine patients (32 MRM; 16 PMM) were recruited for this study. Voxel-based morphometry (VBM) was applied on structural magnetic resonance imaging (sMRI), and the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) in resting state functional MRI (rsfMRI) were calculated. No significant between-group difference was observed in the grey matter volume (GMV). MRM patients exhibited lower ALFF values at the dorsolateral prefrontal cortex (DLPFC) and medial prefrontal cortex (mPFC) than PMM patients. Moreover, the MRM group showed significantly higher ReHo values in the DLPFC. Higher values in the mPFC were related to higher expression of calcitonin gene-associated peptide (CGRP) in the PMM group (r = 0.5, P = 0.048). Combined ALFF and ReHo analyses revealed significantly different spontaneous neural activity in the DLPFC and mPFC, between MRM and PMM patients, and ALFF values in the mPFC were positively correlated with CGRP expression, in the PMM group. This study enhances our understanding of the relationship between neural abnormalities and CGRP expression in individuals with PMM.

Highlights

  • The pathophysiological differences between menstrually-related migraine (MRM) and pure menstrual migraine (PMM) are largely unclear

  • No significant differences between the two groups were observed in the migraine duration or intensity, Headache Impact Test-6 (HIT-6) score, McGill Pain Questionnaire (MPQ) score, or calcitonin gene-related peptide (CGRP) expression level

  • No significant differences were observed in grey matter volume (GMV) between patients with MRM or PMM

Read more

Summary

Introduction

The pathophysiological differences between menstrually-related migraine (MRM) and pure menstrual migraine (PMM) are largely unclear. Higher values in the mPFC were related to higher expression of calcitonin gene-associated peptide (CGRP) in the PMM group (r = 0.5, P = 0.048). Combined ALFF and ReHo analyses revealed significantly different spontaneous neural activity in the DLPFC and mPFC, between MRM and PMM patients, and ALFF values in the mPFC were positively correlated with CGRP expression, in the PMM group. Alterations in the brain’s structure and function due to migraine, have been seen in various regions including the prefrontal cortex, insula, temporal gyrus, posterior cingulate cortex, anterior cingulate cortex, and t­ halamus[7]. We conclude that migraine is a progressive disease and that continual experiences may have an additive effect on the structure and function of the brain

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call