Abstract

Brain development is the result of the combined work of genes and environment. In this paper we first briefly discuss how, in terms of cellular and molecular plasticity mechanisms, the richness of early environment can control developmental trajectories and can induce long-term changes in neural circuits that underlie enduring changes in brain structure and function. We then see that experience most effectively moulds neural circuit development during specific time windows called critical periods. After the closure of these privileged windows for plasticity, it is very difficult to promote repair from 'errors' in brain development. As an example, congenital cataracts, refractive defects, or strabismus, if not precociously corrected during development, cause permanent deficit in visual acuity of the affected eye, a condition known as amblyopia. Little or no recovery from amblyopia is possible in the adult. However, recent results show that by using protocols of enriched environment it is possible to design interventions, which, by acting on specific plasticity factors, enhance adult cortical plasticity and allow recovery from amblyopia. This suggests that a better knowledge of how experience and environment engage endogenous plasticity factors could help to design interventions aimed at promoting recovery from neurodevelopmental defects, even after the end of critical periods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call