Abstract

ABSTRACTIntroductionComputational brain network modeling using The Virtual Brain (TVB) simulation platform acts synergistically with machine learning (ML) and multi‐modal neuroimaging to reveal mechanisms and improve diagnostics in Alzheimer's disease (AD).MethodsWe enhance large‐scale whole‐brain simulation in TVB with a cause‐and‐effect model linking local amyloid beta (Aβ) positron emission tomography (PET) with altered excitability. We use PET and magnetic resonance imaging (MRI) data from 33 participants of the Alzheimer's Disease Neuroimaging Initiative (ADNI3) combined with frequency compositions of TVB‐simulated local field potentials (LFP) for ML classification.ResultsThe combination of empirical neuroimaging features and simulated LFPs significantly outperformed the classification accuracy of empirical data alone by about 10% (weighted F1‐score empirical 64.34% vs. combined 74.28%). Informative features showed high biological plausibility regarding the AD‐typical spatial distribution.DiscussionThe cause‐and‐effect implementation of local hyperexcitation caused by Aβ can improve the ML–driven classification of AD and demonstrates TVB's ability to decode information in empirical data using connectivity‐based brain simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.