Abstract

To explore the importance of brain serotonin (5-hydroxytryptamine) in the heatstroke-induced cerebral ischemia and neuronal injury, we evaluated the effects of heatstroke on brain serotonin release, survival time, cerebral hemodynamic changes, and neuronal cell damage in rats with or without brain serotonin depletion produced by 5,7-dihydroxytryptamine. In vivo voltammetry was used to measure changes in extracellular concentrations of serotonin in the anterior hypothalamus, striatum, and frontal cortex. After the onset of heatstroke, rats without brain serotonin depletion displayed hyperthermia, decreased mean arterial pressure, increased intracranial pressure, decreased cerebral perfusion pressure, decreased cerebral blood flow, increased cerebral serotonin release, and increased cerebral neuronal damage compared with those of normothermic control rats. However, when the cerebral serotonin system was destroyed by 5,7-dihydroxytryptamine, the heatstroke-induced arterial hypotension, intracranial hypertension, ischemic damage to the brain, and elevated cerebral serotonin release were reduced. In addition, the survival time of the heatstroke rats was prolonged after the depletion of brain serotonin. The data indicate that brain serotonin depletion attenuates heatstroke-induced cerebral ischemia and cell death in rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call