Abstract

Although pharmacotherapies are often effective in reducing binge eating in conditions such as bulimia nervosa and binge eating disorder, subsets of patients do not benefit sufficiently from existing treatments, and the reasons for treatment failure remain unclear. This study aimed to evaluate whether genetic reductions in brain serotonin influence binge eating and/or the ability of fluoxetine, a selective serotonin reuptake inhibitor, to reduce binge eating in mice. This study used a validated model of binge-like consumption of high-fat diet to compare binge-like food intake in control and fluoxetine-treated wild-type and serotonin-deficient mice from the tryptophan hydroxylase 2 (R439H) knock-in line. In addition, real-time PCR was used to evaluate potential genotype and sex differences in the effects of fluoxetine on gene expression in the raphe nucleus. The results reveal that brain serotonin deficiency is sufficient to increase binge eating in males, but not females. However, while chronic fluoxetine reduced binge eating in both genotypes of males and in wild-type females, it failed to reduce binge eating in serotonin-deficient females. Transcriptional responses to chronic fluoxetine were also characterized by sex and genotype differences. Overall, this study revealed significant sex differences in the effects of fluoxetine and brain serotonin deficiency on binge-like food intake and suggests that low brain serotonin could impact eating disorders both by promoting binge eating and by limiting the efficacy of fluoxetine to reduce binge eating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call