Abstract
The visual appearance of natural scenes is governed by a surprisingly simple hidden structure. The distributions of contrast values in natural images generally follow a Weibull distribution, with beta and gamma as free parameters. Beta and gamma seem to structure the space of natural images in an ecologically meaningful way, in particular with respect to the fragmentation and texture similarity within an image. Since it is often assumed that the brain exploits structural regularities in natural image statistics to efficiently encode and analyze visual input, we here ask ourselves whether the brain approximates the beta and gamma values underlying the contrast distributions of natural images. We present a model that shows that beta and gamma can be easily estimated from the outputs of X-cells and Y-cells. In addition, we covaried the EEG responses of subjects viewing natural images with the beta and gamma values of those images. We show that beta and gamma explain up to 71% of the variance of the early ERP signal, substantially outperforming other tested contrast measurements. This suggests that the brain is strongly tuned to the image's beta and gamma values, potentially providing the visual system with an efficient way to rapidly classify incoming images on the basis of omnipresent low-level natural image statistics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.