Abstract
AbstractMachine vision technologies have the potential to revolutionize hazard inspection, but training machine learning models requires large labeled datasets and is susceptible to biases. The lack of robust perception capabilities in machine vision systems for construction hazard inspection poses significant safety concerns. To address this, we propose a novel method that leverages human knowledge extracted from electroencephalogram (EEG) recordings to enhance machine vision through transfer learning. By pretraining convolutional neural networks with EEG data recorded during construction hazard evaluations, we investigated three common on‐site hazard classifications using small datasets. Our results demonstrated that the proposed method resulted in improved accuracy (with an 11% increase) and enhanced rationality of machine learning predictions (as revealed by network visualization analysis). This research opens avenues for further exploration and industry applications, aiming to achieve more intelligent and human‐like artificial visual perception, ultimately enhancing safety and efficiency in automated hazard inspection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer-Aided Civil and Infrastructure Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.