Abstract

Microvascular changes have recently been described for several neurodegenerative disorders, including Huntington's disease (HD). HD is characterized by a progressive neuronal cell loss due to a mutation in the Huntingtin gene. However, the temporal and spatial microvascular alterations in HD remain unclear. Also, knowledge on the implication of pericytes in HD pathology is still sparse and existing findings are contradictory. Here we examine alterations in brain pericytes in the R6/2 mouse model of HD and in human post mortem HD brain sections. To specifically track activated pericytes, we crossbred R6/2 mice with transgenic mice expressing the Green fluorescent protein gene under the Regulator of G-protein signaling 5 (Rgs5) promoter. We demonstrate an increase in activated pericytes in the R6/2 brain and in post mortem HD brain tissue. Importantly, pericyte changes are already detected before striatal neuronal cell loss, weight loss or behavioural deficits occur in R6/2 mice. This is associated with vascular alterations, whereby striatal changes precede cortical changes. Our findings suggest that pericyte activation may be one of the initial steps contributing to the observed vascular modifications in HD. Thus, pericytes may constitute an important target to address early microvascular changes contributing to disease progression in HD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.