Abstract

Cerebrovascular lesions are frequently observed in patients with sickle-cell disease (SCD) and these structural lesions are preceded by insidious perfusion deficits. Our aim was to investigate the presence of brain perfusion deficits in neurologically asymptomatic SCD patients, especially affecting microvessels. For this study, 42 SCD patients [33 sickle-cell anemia (HbSS), 6 sickle hemoglobin C disease (HbSC), and 3 sickle β-thalassemia disease (HbSβ)] with mean hematocrit of 25.1 (±4.85; 15.6–38.5) underwent brain perfusion single photon emission computerized tomography (SPECT) using the tracer 99mTc-ECD. Images from SCD patients were compared to images of a healthy control group (29 females and 20 males, mean age 31 ± 8; range 25–49 years). Images underwent voxel-wise comparison of regional tracer uptake using paired t-test to estimate the probability of each voxel to have an increased or decreased tracer uptake. When compared to controls, SCD patients exhibited significantly reduced tracer uptake in basal ganglia and thalami, the anterior frontal region and the watershed region of the temporo-parietal-occipital transition (p < 0.05). Our study showed that neurologically asymptomatic adult SCD patients exhibit a pattern of reduced 99mTc-ECD tracer uptake demonstrated by SPECT. Early diagnosis of this cerebral vasculopathy has prognostic implications and can be determinant in considering therapeutic alternatives to avoid increasing brain lesion load and progressive disability.

Highlights

  • Severe hemolytic anemia, vascular occlusions, and cumulative organ damage secondary to infarcts are frequently found among the clinical manifestations of patients with sickle-cell disease (SCD)

  • Our results demonstrate that neurologically asymptomatic adult SCD patients exhibit brain perfusion abnormalities in areas primarily supplied by small and terminal branches of arterial blood vessels

  • We observed a decreased tracer uptake in the basal central forebrain, including the basal ganglia and thalami, watershed areas of the anterior circulation and cerebellar and occipital cortex. These findings may contribute to the understanding of mechanisms underlying the evolution of cerebral vasculopathy of SCD patients

Read more

Summary

Introduction

Vascular occlusions, and cumulative organ damage secondary to infarcts are frequently found among the clinical manifestations of patients with sickle-cell disease (SCD). Neurological dysfunction is a well-known complication in patients with SCD. It is usually manifested as an acute cerebrovascular accident, or alternatively as a headache, seizure, or cognitive decline [1]. The CSSCD analyzed structural MRI from 312 patients, and reported that ischemic lesions were present in 13% of all SCD patients without a clinical history of overt stroke. These “silent infarcts” have been shown to be associated with neuropsychological decline, progressive brain injury, and are a significant risk factor for overt stroke in SCD patients [6, 7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call