Abstract
The blood-brain barrier (BBB) transport of synthetic A(1) receptor agonists was studied in an in situ brain perfusion model in the presence and absence of the selective nucleoside transport inhibitor S-(4-nitrobenzyl)-6-thioinosine (NBTI). For 8-methylamino-N(6)cyclopentyladenosine (MCPA), N(6)-cyclopentyladenosine (CPA), 2'deoxy-N(6)-cyclopentyladenosine (2'dCPA) and 5'deoxy-N(6)-cyclopentyl adenosine (5'dCPA) the brain uptake clearance was low with values of 0.0045+/-0.0012, 0.018+/-0.0020, 0.022+/-0.0028 and 0.12+/-0.054 ml min(-1)g(-1), respectively. In the presence of an average NBTI plasma concentration of 2.6+/-0.3 microg ml(-1) (NBTI dose: 3 mg kg(-1) i.v.) the values of the brain uptake clearance were 0.0062+/-0.0012, 0.013+/-0.0017, 0.014+/-0.0030 and 0.13+/-0.066 ml min(-1)g(-1), respectively and not significantly different from the values in the absence of NBTI. In a separate experiment the brain uptake of MCPA from phosphate buffered saline (PBS) and whole blood were compared. The brain uptake clearance from whole blood (0.0012+/-0.001 ml min(-1)g(-1)) was significantly lower than from PBS (0.0045+/-0.0012 ml min(-1)g(-1)). The results of these studies show that the rENT1 nucleoside transporter does not contribute significantly to the transport of synthetic A(1) receptor agonists across the BBB and that binding to blood constituents restricts the brain uptake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.