Abstract
We investigated the changes in brain oxygen tension (ptiO2) after ventilation with pure O2 in order to (1) clarify the pathophysiology of O2 exchange in the cerebral microcirculation; and (2) investigate the relationship between brain O2 tension, O2 delivery, and consumption in steady-state conditions during stepwise cerebral blood flow (CBF) reductions. A swine model was developed to reduce CBF in three stable steps: (1) baseline (CBF 100%), (2) CBF of 50-60% of baseline, and (3) CBF of <30% of baseline. CBF was reduced by infusing saline into the left lateral ventricle through a catheter connected with an infusion pump. At each step, hyperoxia was tested by increasing the inspired oxygen fraction up to 100%, PtiO2 reflected the CBF reductions, since it was respectively 27.95 (+/-10.15), 14.77 (+/-3.58), and 3.45 (+/-2.89) mm Hg during the three CBF steps. Hyperoxia was followed by an increase in ptiO2, although the increase was significantly lower when hyperoxia was applied during progressive ischemia. O2 supply to the brain did not change during hyperoxia. Arteriovenous oxygen difference (AVDO2) decreased during the phases of intact CBF and moderate impairment, but not during the phase of severe CBF reduction. In conclusion, ptiO2 reductions closely reflect the imbalance between oxygen delivery and demand; this implies a link between low ptiO2 and defective O2 supply due to impaired CBF. However, this relation is not necessarily reciprocal, since manipulating brain oxygen tension does not always influence brain oxygen delivery, as in the case of ventilation with pure oxygen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.