Abstract

BackgroundNeuroinflammation is a proposed mechanism by which Alzheimer’s disease (AD) pathology potentiates neuronal death and cognitive decline. Consumption of omega-3 polyunsaturated fatty acids (PUFA) is associated with a decreased risk of AD in human observational studies and exerts protective effects on cognition and pathology in animal models. These fatty acids and molecules derived from them are known to have anti-inflammatory and pro-resolving properties, presenting a potential mechanism for these protective effects.MethodsHere, we explore this mechanism using fat-1 transgenic mice and their wild type littermates weaned onto either a fish oil diet (high in n-3 PUFA) or a safflower oil diet (negligible n-3 PUFA). The fat-1 mouse carries a transgene that enables it to convert omega-6 to omega-3 PUFA. At 12 weeks of age, mice underwent intracerebroventricular (icv) infusion of amyloid-β 1-40. Brains were collected between 1 and 28 days post-icv, and hippocampal microglia, astrocytes, and degenerating neurons were quantified by immunohistochemistry with epifluorescence microscopy, while microglia morphology was assessed with confocal microscopy and skeleton analysis.ResultsFat-1 mice fed with the safflower oil diet and wild type mice fed with the fish oil diet had higher brain DHA in comparison with the wild type mice fed with the safflower oil diet. Relative to the wild type mice fed with the safflower oil diet, fat-1 mice exhibited a lower peak in the number of labelled microglia, wild type mice fed with fish oil had fewer degenerating neurons, and both exhibited alterations in microglia morphology at 10 days post-surgery. There were no differences in astrocyte number at any time point and no differences in the time course of microglia or astrocyte activation following infusion of amyloid-β 1-40.ConclusionsIncreasing brain DHA, through either dietary or transgenic means, decreases some elements of the inflammatory response to amyloid-β in a mouse model of AD. This supports the hypothesis that omega-3 PUFA may be protective against AD by modulating the immune response to amyloid-β.

Highlights

  • Neuroinflammation is a proposed mechanism by which Alzheimer’s disease (AD) pathology potentiates neuronal death and cognitive decline

  • The top rows for each time point are images enhanced for contrast and sharpness for publication; bottom images are the same images in which a threshold was applied to show labelled cells

  • Standard error of the mean (SEM) standard error of the mean relative to control (Fig. 1b, graph shown for the mean of four fields), and counts were significantly different from 24 h at 15 days (CA2, CA3, and dentate gyrus (DG)) and 21 days (CA1, CA2, and CA3) post-icv

Read more

Summary

Introduction

Neuroinflammation is a proposed mechanism by which Alzheimer’s disease (AD) pathology potentiates neuronal death and cognitive decline. Alzheimer’s disease (AD) is characterized by neuronal loss, the deposition of amyloid-β plaques, and the hyperphosphorylation of intracellular tau proteins, leading to the formation of neurofibrillary tangles In addition to these features, neuroinflammation is increasingly recognized as a hallmark of AD. Scores on the mini mental state exam, a measure of cognitive impairment where lower scores indicate greater impairment, are inversely correlated with PK11195 binding, but not with uptake of PIB [10], suggesting an independent effect of inflammation on cognitive decline This is supported by studies associating genetic polymorphisms in various inflammationassociated genes with AD risk, including polymorphisms in triggering receptor expressed on myeloid cell (TREM) 2, cluster of differentiation (CD) 33, IL-6, toll-like receptor (TLR) 4, and IL-1 [11,12,13,14,15,16,17]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call