Abstract

The turnover rates of dopamine, norepinephrine, serotonin, aspartate, glutamate and GABA were measured in 27 brain regions of rats self-administering cocaine and in yoked cocaine- and yoked vehicle-infused controls using radioactive pulse-labeling procedures to identify brain neuronal systems underlying self-administration. Changes in the activity of heretofore unrecognized dopamine, norepinephrine, serotonin, glutamate and GABA innervations of the forebrain specific to cocaine self-administration were found. This included innervations of the nucleus accumbens, ventral pallidum, lateral hypothalamus and the anterior and posterior cingulate, entorhinal–subicular and visual cortices. Turnover rates also were calculated using metabolite/neurotransmitter ratios which were inconsistent with the pulse-label technologies indicating that ratio procedures are not accurate measures of neurotransmitter utilization. Results with the pulse-label technique provide evidence of the involvement of neuronal systems in cocaine self-administration not previously known, some of which may have a broader role in brain reinforcement processes for natural reinforcers (i.e. food, water, etc.) since drugs of abuse are thought to produce reinforcing effects by modulating activity in these endogenous systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.