Abstract

The characterization of human neural activity during imaginary movement tasks represent an important challenge in order to develop effective applications that allow the control of a machine. Yet methods based on brain network analysis of functional connectivity have been scarcely investigated. As a result we use graph theoretic methods to investigate the functional connectivity and brain network measures in order to characterize imagery hand movements in a set of healthy subjects. The results of the present study show that functional connectivity analysis and minimum spanning tree (MST) parameters allow to successfully discriminate between imagery hand movements (both right and left) and resting state conditions. In conclusion, this paper shows that brain network analysis of EEG functional connectivity could represent an efficient alternative to more classical local activation based approaches. Furthermore, it also suggests the shift toward methods based on the characterization of a limited set of fundamental functional connections that disclose salient network topological features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.