Abstract

Brain Magnetic Resonance (MR) images often suffer from the inhomogeneous intensities caused by the bias field and heavy noise. The most widely used image segmentation algorithms, which typically rely on the homogeneity of image intensities in different regions, often fail to provide accurate segmentation results due to the existence of bias field and heavy noise. This paper proposes a novel variational approach for brain image segmentation with simultaneous bias correction. We define an energy functional with a local data fitting term and a nonlocal spatial regularization term. The local data fitting term is based on the idea of local Gaussian mixture model (LGMM), which locally models the distribution of each tissue by a linear combination of Gaussian function. By the LGMM, the bias field function in an additive form is embedded to the energy functional, which is helpful for eliminating the influence of the intensity inhomogeneity. For reducing the influence of noise and getting a smooth segmentation, the nonlocal spatial regularization is drawn upon, which is good at preserving fine structures in brain images. Experiments performed on simulated as well as real MR brain data and comparisons with other related methods are given to demonstrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.