Abstract

Highly significant elevations in regional brain monoamine oxidase A (MAO-A) binding were recently reported during major depressive episodes (MDEs) of major depressive disorder (MDD). The relationship between MAO-A levels and selective serotonin reuptake inhibitor (SSRI) treatment, recovery, and recurrence in MDD is unknown. To determine whether brain MAO-A binding changes after SSRI treatment, whether brain MAO-A binding normalizes in subjects with MDD in recovery, and whether there is a relationship between prefrontal and anterior cingulate cortex MAO-A binding in recovery and subsequent recurrence of MDE. Case-control study. Tertiary care psychiatric hospital. Twenty-eight healthy subjects, 16 subjects with an MDE secondary to MDD, and 18 subjects with MDD in recovery underwent carbon 11-labeled harmine positron emission tomography scans. Subjects with MDE were scanned before and after 6 weeks of SSRI treatment. All were otherwise healthy, nonsmoking, and medication free. Subjects with MDD in recovery were followed up for 6 months after MAO-A binding measurement. Monoamine oxidase A V(T), an index of MAO-A density, was measured in the prefrontal cortex, anterior cingulate cortex, posterior cingulate cortex, dorsal putamen, ventral striatum, thalamus, anterior temporal cortex, midbrain, and hippocampus. Monoamine oxidase A V(T) was significantly elevated in each brain region both during MDE and after SSRI treatment as compared with healthy controls. During recovery, MAO-A V(T) was significantly elevated in each brain region; however, those who went on to recurrence had significantly higher MAO-A V(T) in the prefrontal and anterior cingulate cortex than those who did not. Elevated MAO-A binding after SSRI treatment indicates persistence of a monoamine-lowering process not present in health. This provides a strong conceptual rationale for continuing SSRI treatment during early remission. Greater MAO-A binding in the prefrontal and anterior cingulate cortex in subjects with MDD in recovery and its association with subsequent recurrence argue that deficient monoamine neuromodulation may persist into recovery and contribute to recurrence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call