Abstract

We assessed brain metabolite levels by magnetic resonance spectroscopy (MRS) in 1-year-old infants born small at term, as compared with infants born appropriate for gestational age (AGA), and their association with neurodevelopment at 2 years of age. A total of 40 infants born small (birthweight <10th centile for gestational age) and 30 AGA infants underwent brain MRS at age 1 year on a 3-T scanner. Small-born infants were subclassified as late intrauterine growth restriction or as small for gestational age, based on the presence or absence of prenatal Doppler and birthweight predictors of an adverse perinatal outcome, respectively. Single-voxel proton magnetic resonance spectroscopy ((1)H-MRS) data were acquired from the frontal lobe at short echo time. Neurodevelopment was evaluated at 2 years of age using the Bayley Scales of Infant and Toddler Development, Third Edition, assessing cognitive, language, motor, social-emotional, and adaptive behavior scales. As compared with AGA controls, infants born small showed significantly higher levels of glutamate and total N-acetylaspartate (NAAt) to creatine (Cr) ratio at age 1 year, and lower Bayley Scales of Infant and Toddler Development, Third Edition scores at 2 years. The subgroup with late intrauterine growth restriction further showed lower estimated glutathione levels at age 1 year. Significant correlations were observed for estimated glutathione levels with adaptive scores, and for myo-inositol with language scores. Significant associations were also noticed for NAA/Cr with cognitive scores, and for glutamate/Cr with motor scores. Infants born small show brain metabolite differences at 1 year of age, which are correlated with later neurodevelopment. These results support further research on MRS to develop imaging biomarkers of abnormal neurodevelopment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.