Abstract

This study was designed to measure glucose metabolic deficits in areas not typically recognized as abnormal on 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) scans in patients with Alzheimer's disease (AD), and to correlate such findings with subtle neuropsychological impairment. FDG-PET scans on 38 AD patients with no clinical evidence of visual, spatial or motor deficits were acquired on the PET HEAD scanner 40 min following the intravenous administration of 115 microCi.kg-1 of FDG. All FDG-PET scans were analysed blindly using a region of interest (ROI) template with regions for the primary visual cortex (PVC), secondary visual cortex (SVC) and cerebellum. Counts from the ROIs of these regions were normalized to whole brain activity and the results were compared with psychometric and neuropsychological measures. A number of significant correlations were found between these structures and various neuropsychological measures (P<0.05). Specifically, there were significant correlations between clock drawing and the cerebellum activity; memory and activity in the PVC, SVC and cerebellum; social score and activity in the PVC and left cerebellum; judgement and activity in the right SVC and right PVC; and the overall Mini-Mental State Examination and activity in the PVC, SVC and cerebellum. The results of this study suggest that metabolism in areas not typically recognized as abnormal on FDG-PET scans in AD, such as the PVC, SVC and cerebellum, is correlated with deficits in neuropsychological function. This may have important clinical and pathophysiological implications in the study of AD and other illnesses of dementia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call