Abstract

Enactive cognition emphasizes co-constructive roles of humans and their environment in shaping cognitive processes. It is specifically engaged in the mental simulation of behaviors, enhancing the connection between perception and action. Here we investigated the core network of brain regions involved in enactive cognition as applied to mental simulations of physical exercise. We used a neuroimaging paradigm in which participants (N = 103) were required to project themselves running or plogging (running while picking-up litter) along an image-guided naturalistic trail. Using both univariate and multivariate brain imaging analyses, we find that a broad spectrum of brain activation discriminates between the mental simulation of plogging versus running. Critically, we show that self-reported ratings of daily life running engagement and the quality of mental simulation (how well participants were able to imagine themselves running) modulate the brain reactivity to plogging versus running. Finally, we undertook functional connectivity analyses centered on the insular cortex, which is a key region in the dynamic interplay between neurocognitive processes. This analysis revealed increased positive and negative patterns of insular-centered functional connectivity in the plogging condition (as compared to the running condition), thereby confirming the key role of the insular cortex in action simulation involving complex sets of mental mechanisms. Taken together, the present findings provide new insights into the brain networks involved in the enactive mental simulation of physical exercise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.