Abstract

Interpersonal communication through vocal information is very important for human society. During verbal interactions, our vocal cord vibrations convey important information regarding voice identity, which allows us to decide how to respond to speakers (e.g., neither greeting a stranger too warmly or speaking too coldly to a friend). Numerous neural studies have shown that identifying familiar and unfamiliar voices may rely on different neural bases. However, the mechanism underlying voice identification of individuals of varying familiarity has not been determined due to vague definitions, confusion of terms, and differences in task design. To address this issue, the present study first categorized three kinds of voice identity processing (perception, recognition and identification) from speakers with different degrees of familiarity. We defined voice identity perception as passively listening to a voice or determining if the voice was human, voice identity recognition as determining if the sound heard was acoustically familiar, and voice identity identification as ascertaining whether a voice is associated with a name or face. Of these, voice identity perception involves processing unfamiliar voices, and voice identity recognition and identification involves processing familiar voices. According to these three definitions, we performed activation likelihood estimation (ALE) on 32 studies and revealed different brain mechanisms underlying processing of unfamiliar and familiar voice identities. The results were as follows: (1) familiar voice recognition/identification was supported by a network involving most regions in the temporal lobe, some regions in the frontal lobe, subcortical structures and regions around the marginal lobes; (2) the bilateral superior temporal gyrus was recruited for voice identity perception of an unfamiliar voice; (3) voice identity recognition/identification of familiar voices was more likely to activate the right frontal lobe than voice identity perception of unfamiliar voices, while voice identity perception of an unfamiliar voice was more likely to activate the bilateral temporal lobe and left frontal lobe; and (4) the bilateral superior temporal gyrus served as a shared neural basis of unfamiliar voice identity perception and familiar voice identity recognition/identification. In general, the results of the current study address gaps in the literature, provide clear definitions of concepts, and indicate brain mechanisms for subsequent investigations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call