Abstract

Region-selective accumulation of brain lactate occurs in TD; however, the mechanisms responsible have not been elucidated fully. (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy were therefore used to investigate de novo lactate synthesis from [1-(13)C]glucose in vulnerable (medial thalamus) and nonvulnerable (frontal cortex) brain regions of rats made thiamine deficient by administration of the central thiamine antagonist pyrithiamine. De novo synthesis of lactate was increased in the medial thalamus to 148% and 226% of pair-fed control values at presymptomatic and symptomatic stages of thiamine deficiency, respectively, whereas no such changes were observed in the frontal cortex. Administration of a glucose load selectively worsened the changes in medial thalamus. Pyruvate recycling and peripherally derived lactate did not contribute significantly to the lactate increase within the thiamine-deficient brain. Increases in immunolabeling of the lactate dehydrogenase isoenzymes (LDH1 and LDH5) were observed in the medial thalamus of thiamine-deficient animals. Metabolic impairment due to thiamine deficiency thus results in increased glycolysis, increased LDH immunolabeling of neurons and astrocytes and increased de novo synthesis of lactate in brain regions vulnerable to thiamine deficiency. These results are consistent with the notion that focal lactate accumulation participates in the worsening of neurologic symptoms in thiamine-deficient patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.