Abstract
Iron is the most abundant trace element in the human body. It is well known that iron is an important component of hemoglobin involved in the transport of oxygen. As a component of various enzymes, it participates in the tricarboxylic acid cycle and oxidative phosphorylation. Iron in the nervous system is also involved in the metabolism of catecholamine neurotransmitters and is involved in the formation of myelin. Therefore, iron metabolism needs to be strictly regulated. Previous studies have shown that iron deficiency in the brain during infants and young children causes mental retardation, such as delayed development of language and body balance, and psychomotor disorders. However, if the iron is excessively deposited in the aged brain, it is closely related to the occurrence of various neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Friedreich's ataxia. Therefore, it is important to fully study and understand the mechanism of brain iron metabolism and its regulation. On this basis, exploring the relationship between brain iron regulation and the occurrence of nervous system diseases and discovering new therapeutic targets related to iron metabolism have important significance for breaking through the limitation of prevention and treatment of nervous system diseases. This review discusses the complete research history of iron and its significant role in the pathogenesis of the central nervous system (CNS) diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.