Abstract

We have previously reported that insulin binding is decreased in the olfactory bulb of both heterozygous (Fa/fa) and obese (fa/fa) Zucker rats. In the present study, we measured insulin binding in membranes prepared from the olfactory bulb, cerebral cortex, and hypothalamus of control (Fa/Fa) Wistar Kyoto rats; “fatty” (fa/fa) Wistar Kyoto rats; and phenotypically lean (Fa/?) Wistar Kyoto rats. Insulin binding was decreased in all brain regions, as well as the liver of the obese Wistar Kyoto fa/fa rats. Additionally, insulin binding was decreased in the liver and brain membranes from the Fa/? Wistar Kyoto rats. As most of the Fa/? rats were probably carriers of one ‘fa’ gene, but the population was only slightly hyperinsulinemic, we conclude that—as in the Zucker rat—it is the presence and expression of the ‘fa’ gene rather than downregulation which results in the decreased insulin binding. Thus, regulation of the brain insulin receptor appears to be independent of plasma or cerebrospinal fluid insulin levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.