Abstract

With the development of artificial intelligence and brain science, brain-inspired navigation and path planning has attracted widespread attention. In this paper, we present a place cell based path planning algorithm that utilizes spiking neural network (SNN) to create efficient routes for drones. First, place cells are characterized by the leaky integrate-and-fire (LIF) neuron model. Then, the connection weights between neurons are trained by spike-timing-dependent plasticity (STDP) learning rules. Afterwards, a synaptic vector field is created to avoid obstacles and to find the shortest path. Finally, simulation experiments both in a Python simulation environment and in an Unreal Engine environment are conducted to evaluate the validity of the algorithms. Experiment results demonstrate the validity, its robustness and the computational speed of the proposed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.