Abstract

Few-shot class-incremental learning (FSCIL) aims to learn new classes incrementally with a limited number of samples per class. Foundation models combined with prompt tuning showcase robust generalization and zero-shot learning (ZSL) capabilities, endowing them with potential advantages in transfer capabilities for FSCIL. However, existing prompt tuning methods excel in optimizing for stationary datasets, diverging from the inherent sequential nature in the FSCIL paradigm. To address this issue, taking inspiration from the "fast and slow mechanism" of the complementary learning systems (CLSs) in the brain, we present fast-and slow-update prompt tuning FSCIL (FSPT-FSCIL), a brain-inspired prompt tuning method for transferring foundation models to the FSCIL task. We categorize the prompts into two groups: fast-update prompts and slow-update prompts, which are interactively trained through meta-learning. Fast-update prompts aim to learn new knowledge within a limited number of iterations, while slow-update prompts serve as meta-knowledge and aim to strike a balance between rapid learning and avoiding catastrophic forgetting. Through experiments on multiple benchmark tests, we demonstrate the effectiveness and superiority of FSPT-FSCIL. The code is available at https://github.com/qihangran/FSPT-FSCIL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.