Abstract
In this paper, a new image segmentation method is proposed by combining the FCM clustering algorithm with a rough set theory. First, the attribute value table is constructed based on the segmentation results of FCM under different clustering numbers, and the image is divided into several small regions based on the indistinguishable relationship of attributes. Then, the weight values of each attribute are obtained by value reduction and used as the basis to calculate the difference between regions and then the similarity evaluation of each region is realized through the equivalence relationship defined by the difference degree. Finally, the final equivalence relation defined by similarity is used to merge regions and complete image segmentation. This method is validated in the segmentation of artificially generated images, brain CT images, and MRI images. The experimental results show that compared with the FCM method, the proposed method can reduce the error rate and achieve better segmentation results for the fuzzy boundary region. And, the experimental results also prove that the algorithm has strong anti-noise ability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.