Abstract

Fluid and electrolyte homeostasis is integral to blood pressure regulation. However, the central molecular mechanisms regulating the neural control of sodium excretion remain unclear. We have demonstrated that brain Gαi(2)-subunit protein pathways mediate the natriuretic response to α(2)-adrenoreceptor activation in vivo. Consequently, we examined the role of brain Gαi(2) proteins in the neural mechanisms facilitating fluid and electrolyte homeostasis in response to acute [i.v. volume expansion (VE)] or chronic stressful stimuli (dietary sodium restriction vs. supplementation) in conscious Sprague-Dawley rats. Selective oligodeoxynucleotide (ODN)-mediated down-regulation of brain Gαi(2) proteins, but not a scrambled ODN, abolished the renal sympathoinhibitory response and attenuated the natriuresis to VE. In scrambled ODN-treated rats, chronic changes in dietary sodium intake evoked an endogenous, hypothalamic paraventricular nucleus (PVN)-specific, decrease (sodium deficiency) or increase (sodium excess) in PVN Gαi(2) proteins; plasma norepinephrine levels were inversely related to dietary sodium content. Finally, in rats treated with an ODN to prevent high salt-induced up-regulation of brain Gαi(2) proteins, animals exhibited sodium retention, global sympathoexcitation, and elevated blood pressure. Collectively, these data demonstrate that PVN Gαi(2) protein pathways play an endogenous role in maintaining fluid and electrolyte balance by controlling the influence the sympathetic nervous system has on the renal handling of sodium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call