Abstract
Lewis rats are more likely to self-administer various drugs of abuse than Fischer rats. Here these two strains of rats were compared with regard to basal brain opioid peptide levels and the response to chronic morphine treatment and to naloxone-precipitated withdrawal. Lewis rats had lower basal dynorphin peptides in the substantia nogra, striatum (not Leu-enkephalinArg 6) and VTA (not dynorphin B) and the pituitary gland. Leu-enkephalinArg 6 levels were also lower in these structures (with the exception of striatum which had higher levels) and in the nucleus accumbens. There were also strain differences in the response to chronic morphine treatment; in the nucleus accumbens, morphine treatment increased dynorphin A levels in Fischer rats only, in the ventral tegmental area effects were opposite with increased dynorphin levels in Fischer and decreased levels in Lewis rats, in the hippocampus dynorphin levels were markedly reduced in Lewis rats only. In Fischer rats, chronic morphine strongly affected peptide levels in the substantia nigra and striatum, whereas Lewis rats responded less in these areas. Leu-enkephalin, which derives from both prodynorphin and proenkephalin, and Met-enkephalin, which derives from proenkephalin, were effected by chronic morphine mainly in Fischer rats, increasing levels in most of the brain areas examined. The results in this study show (1) strain differences in basal levels of prodynorphin-derived opioid peptides, (2) the prodynorphin system to be differently influenced by morphine in Lewis rats than in Fischer rats and 3) the proenkephalin system to be influenced by chronic morphine in brain areas related to reward processes only in Fischer rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.