Abstract

Brain-derived neurotrophic factor (BDNF) increases postsynaptic intracellular Ca2+ and modulates synaptic transmission in various types of neurons. Ca2+-activated K+ currents, opened mainly by intracellular Ca2+ elevation, contribute to hyperpolarization following action potentials and modulate synaptic transmission. We asked whether BDNF induces Ca2+-activated K+ currents by postsynaptic elevation of intracellular Ca2+ in acutely dissociated visual cortex neurons of rats. Currents were analysed using the nystatin-perforated patch clamp technique and imaging of intracellular Ca2+ mobilization with fura-2. At a holding potential of -50 mV, BDNF application (20 ng/mL) for 1-2 min induced an outward current (IBDNF-OUT; 80.0 +/- 29.0 pA) lasting for more than 90 min without attenuation in every neuron tested. K252a (200 nm), an inhibitor of Trk receptor tyrosine kinase, and U73122 (3 microm), a specific phospholipase C (PLC)-gamma inhibitor, suppressed IBDNF-OUT completely. IBDNF-OUT was both charybdotoxin- (600 nm) and apamin- (300 nm) sensitive, suggesting that this current was carried by Ca2+-activated K+ channels. BAPTA-AM (150 microm) gradually suppressed IBDNF-OUT. Fura-2 imaging revealed that a brief application of BDNF elicited a long-lasting elevation of intracellular Ca2+. These results show that BDNF induces long-lasting Ca2+-activated K+ currents by sustained intracellular Ca2+ elevation in rat visual cortex neurons. While BDNF, likely acting through the Trk B receptor, was necessary for the induction of long-lasting Ca2+-activated K+ currents via intracellular Ca2+ elevation, BDNF was not necessary for the maintenance of this current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.