Abstract

The mechanism underlying visceral pain is still largely unclear. Recently, much attention has focused on a potential modulatory role of brain-derived neurotrophic factor (BDNF) in visceral pain. In the present study, we investigated the expression of BDNF in dorsal root ganglia (DRG) primary sensory neurons and its role in a colorectal distention (CRD)-induced model of visceral pain. Results obtained from enzyme-linked immunosorbant assay (ELISA) revealed that BDNF protein was upregulated after CRD. An abdominal withdrawal reflex (AWR) assay confirmed that BDNF played an antinociceptive role in this model. Application of BDNF directly to DRG neurons decreased their hypersensitivity when evoked by CRD. Pretreatment with k252a partially blocked the effect of BDNF. These findings suggest that BDNF might be a novel analgesic agent for the treatment of visceral pain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.