Abstract

The epidermal growth factor (EGF) receptor plays an important role in epithelial cells by controlling cell proliferation and survival. Keratinocytes also express another class of receptor tyrosine kinases, the neurotrophin receptors. To analyze the biological role of the neurotrophin brain-derived neurotrophic factor (BDNF) in keratinocytes, we expressed the BDNF receptor TrkB in immortalized human HaCaT keratinocytes. Stimulation of HaCaT-TrkB cells with BDNF induced DNA synthesis and increased mitochondrial reduction capacities, both indications of proliferating cells. An analysis of the signal transduction cascade revealed that the activated TrkB receptor effectively utilized components of the EGF receptor signaling pathway to control cell proliferation. Mitogenic signaling induced by BDNF or EGF was completely abrogated by the MAP kinase kinase inhibitor PD-98059, whereas inhibition of phosphatidylinositol 3-kinase by wortmannin only delayed the proliferative response. The importance of the extracellular signal-regulated kinase signaling pathway for growth of HaCaT keratinocytes was further demonstrated with HaCaT cells engineered to express an inducible A-Raf-estrogen receptor fusion protein (DeltaA-Raf:ER). Despite differences in the amplitude and duration of extracellular signal-regulated kinase activation, HaCaT cells expressing DeltaA-Raf:ER proliferated after activation of mutant A-Raf protein kinase. Proliferation was completely inhibited by PD-98059. Proliferation of HaCaT cells induced by EGF, BDNF, or DeltaA-Raf:ER was also accompanied by biosynthesis of the transcription factors Egr-1 and c-Jun, suggesting that these proteins may be part of the mitogenic signaling cascade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.