Abstract
In this review, we examine the importance of having a body as essential for the brain to transfer information about the outside world to generate appropriate motor responses. We discuss the context-dependent conditioning of the motor control neural circuits and its dependence on the completion of feedback loops, which is in close agreement with the insights of Hebb and colleagues, who have stressed that for learning to occur the body must be intact and able to interact with the outside world. Finally, we apply information theory to data from published studies to evaluate the robustness of the neuronal signals obtained by bypassing the body (as used for brain-machine interfaces) versus via the body to move in the world. We show that recording from a group of neurons that bypasses the body exhibits a vastly degraded level of transfer of information as compared to that of an entire brain using the body to engage in the normal execution of behaviour. We conclude that body sensations provide more than just feedback for movements; they sustain the necessary transfer of information as animals explore their environment, thereby creating associations through learning. This work has implications for the development of brain-machine interfaces used to move external devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.