Abstract
The monoclonal antibody HNK-1 originally raised to an antigenic marker of natural killer cells also binds to selected regions in nervous tissue. The antigen is a carbohydrate that has attracted much interest as its expression is developmentally regulated in nervous tissue, and it is found, and proposed to be a ligand, on several of the adhesive glycoproteins of the nervous system. It is also expressed on glycolipids and proteoglycans, and is the target of monoclonal auto-antibodies that give rise to a demyelinating disease. The epitope, as characterized on glycolipids isolated from the nervous system, is expressed on 3-sulfated glucuronic acid joined by beta1-3-linkage to a neolacto backbone. Here we exploit the neoglycolipid technology, in conjunction with immunodetection and in situ liquid secondary ion mass spectrometry, to characterize HNK-1-positive oligosaccharide chains derived by reductive alkaline release from total brain glycopeptides. The immunoreactive oligosaccharides detected are tetra- to octasaccharides that are very minor components among a heterogeneous population, each representing less than 0.1% of the starting material. Their peripheral and backbone sequences resemble those of the HNK-1-positive glycolipids. An unexpected finding is that they terminate not with N-acetylgalactosaminitol but with hexitol (2-substituted and 2,6-disubstituted). In a tetrasaccharide investigated in the greatest detail, the hexitol is identified as 2-substituted mannitol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.