Abstract
BackgroundIdentifying early biomarkers of serious mental illness (SMI)—such as changes in brain structure and function—can aid in early diagnosis and treatment. Whole brain structural and functional connectomes were investigated in youth at risk for SMI.MethodsParticipants were classified as healthy controls (HC; n = 33), familial risk for serious mental illness (stage 0; n = 31), mild symptoms (stage 1a; n = 37), attenuated syndromes (stage 1b; n = 61), or discrete disorder (transition; n = 9) based on clinical assessments. Imaging data was collected from two sites. Graph-theory based analysis was performed on the connectivity matrix constructed from whole-brain white matter fibers derived from constrained spherical deconvolution of the diffusion tensor imaging (DTI) scans, and from the correlations between brain regions measured with resting state functional magnetic resonance imaging (fMRI) data.ResultsLinear mixed effects analysis and analysis of covariance revealed no significant differences between groups in global or nodal metrics after correction for multiple comparisons. A follow up machine learning analysis broadly supported the findings. Several non-overlapping frontal and temporal network differences were identified in the structural and functional connectomes before corrections.ConclusionsResults suggest significant brain connectome changes in youth at transdiagnostic risk may not be evident before illness onset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.