Abstract

The human best response frequency band for steady-state visual evoked potential stimulus is limited. This results in a reduced number of encoded targets. To circumvent this, we proposed a brain-computer interface (BCI) method based on light-flashing and motion hybrid coding. The hybrid paradigm pattern consisted of a circular light-flashing pattern and a motion pattern located in the inner ring of light-flashing pattern. The motion and light-flashing patterns had different frequencies. This study used five frequencies to encode nine targets. The motion frequency and the light-flashing frequency of the hybrid paradigm consisted of two frequencies in five frequencies. The experimental results showed that the hybrid paradigm could induce stable motion frequency, light-flashing frequency and its harmonic components. Moreover, the modulation between motion and light-flashing was weak. The average accuracy was 92.96% and the information transfer rate was 26.10bits/min. The experimental results showed that the proposed method could be considered for practical BCI systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.