Abstract

The prevention of an inflammation in the brain is one of the most important goals the body has to achieve. As pericytes are located on the abluminal side of the capillaries in the brain, their role in fighting against invading pathogens has been investigated in some points, mostly in their ability to behave like macrophages. Here we studied the potential of pericytes to react as immune cells under inflammatory conditions, especially regarding the expression of the inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), major histocompatibility complex II (MHC II) molecules, CD68, as well as the generation of reactive oxygen and nitrogen species (RONS), and their ability in phagocytosis. Quantitative real time PCR and western blot analysis showed that pericytes are able to increase the expression of typical inflammatory marker proteins after the stimulation with tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), interferon-gamma (IFN-γ), or lipopolysaccharides (LPS). Depending on the different specific pro-inflammatory factors pericytes changed the expression of alpha smooth muscle actin (αSMA), the most predominant pericyte marker. We conclude that the role of the pericytes within the immune system is regulated and fine-tuned by different cytokines strongly depending on the time when the cytokines are released and their concentration. The present results will help to understand the pericyte mediated defense mechanisms in the brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.