Abstract
Multiple Sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system, and the second cause of neurological disability after trauma in young adults in the Western world. The efficacy of disease-modifying treatments (DMTs) in relapsing-remitting (RR) and secondary-progressive (SP) MS is usually surrogated by assessing new/enlarged T2 and gadolinium (Gd)-enhancing lesions on magnetic resonance imaging (MRI) scans. More recently, brain atrophy has been incorporated as an outcome measure in MS clinical trials due to its reproducibility, correlation with disability, and detectability from early disease stages. Brain atrophy measures, however, could lead to equivocal conclusions if a series of factors are not taken into account, particularly the influence of inflammation.
Highlights
Brain Atrophy as a Measure of Neuroprotective Drug Effects in Multiple Sclerosis: Influence of Inflammation
Some clinical trials evaluating the effects of the same drugs on brain atrophy reported conflicting results between them, which have been mainly attributed to the inclusion of heterogenous patient populations, and/or the use of different magnetic resonance imaging (MRI) acquisitions and post-processing methods (De Stefano et al, 2014)
A recent systematic review and meta-analysis of 12 studies evaluating the effects of first-generation disease-modifying treatments (DMTs) on annualized percentage brain volume change (PBVC) over at least 12-month follow-up by Structural Image Evaluation of Normalized Atrophy algorithm reported that its pooled value was similar between treated and untreated patients (−0.69 and −0.71%, respectively; Vollmer et al, 2015)
Summary
Brain Atrophy as a Measure of Neuroprotective Drug Effects in Multiple Sclerosis: Influence of Inflammation. A recent systematic review and meta-analysis of 12 studies evaluating the effects of first-generation DMTs on annualized percentage brain volume change (PBVC) over at least 12-month follow-up by Structural Image Evaluation of Normalized Atrophy algorithm reported that its pooled value was similar between treated and untreated patients (−0.69 and −0.71%, respectively; Vollmer et al, 2015).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.