Abstract

Transvenous embolization has emerged as a novel technique for treating selected brain AVMs with high reported occlusion rates. However, it requires anatomic and technical skills to be successful and to ensure patient safety. Therefore, training and testing are essential for preparing clinicians to perform these procedures. Our aim was to develop and test a novel, patient-specific brain AVM in vitro model for transvenous embolization by using 3D printing technology. We developed a brain AVM in vitro model based on real patient data by using stereolithography resin 3D printing. We created a closed pulsed circuit with flow passing from the arterial side to the venous side, and we tested the effect of mean arterial pressure on retrograde nidal filling with contrast injections. Transvenous embolization simulations were conducted for each of the 12 identical models divided into 2 groups (2×6). This involved the use of an ethylene-vinyl alcohol liquid embolic agent injected through microcatheters either without or with a coil in the vein (groups 1 and 2, respectively). Retrograde contrast advance to nidus was directly related to lower mean arterial pressure. Transvenous embolization tests with a liquid embolic agent adequately reproduced the usual embolization plug and push technique. We found no differences between the 2 group conditions, and additional venous coil neither increased nidus penetration nor reduced injection time in the model (57.6 versus 61.2% nidus occlusion rate, respectively). We were able to develop and test a functional in vitro brain AVM model for transvenous embolization by using 3D printing to emulate its conditions and characteristics. Better contrast penetration was achieved with less mean arterial pressure, and no embolization advantage was found by adding coil to the vein in this model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.